
www.manaraa.com

Experiences with Software Product Line
Development in Risk Management Software

Gerard Quilty
ORisk Consulting

Dublin, Ireland
Gerard.Quilty@gmail.com

Mel Ó Cinnéide
School of Computer Science and Informatics

University College Dublin
Dublin, Ireland.

mel.ocinneide@ucd.ie

Abstract�— Software Product Lines are intended to reduce time to
market, improve quality and decrease costs. In this paper we
examine the evolution of a single system to a Software Product
Line, and evaluate if these benefits have occurred in this case. We
describe in detail how this evolution took place and relate our
experiences to those described in the current literature. Three
tenets used by the company involved helped avoid some of the
known pitfalls. A configurable core asset version of functionality
is compared to the previous customizable version of the same
functionality. From analyzing empirical data collected over a ten-
year period, we find that efficiency and quality have improved,
while costs have been reduced. The high initial investment
associated with evolving to an SPL has been postponed by taking
small steps towards an SPL architecture. In addition, this
approach has enabled us to expand our product into a wider
market and deal with more complex customer requirements
without incurring a corresponding increase in staffing and costs.

Keywords: operational risk management, software product
lines, industrial experience.

I. INTRODUCTION
ORisk Consulting is an independent business unit of a large

multinational company that provides Operational Risk
Management Software to financial intuitions. The product,
Blade, has undergone numerous changes in its ten year history.
It was originally built as a bespoke project for a single
customer and now is a recognized leader in operational risk
management software. The processes and coding standards
involved in developing and implementing Blade resemble
those involved in developing a family of software products or a
software product line.

A Software Product Line (SPL) is a set of software
intensive systems that satisfy the specific needs of a particular
market segment developed from a common set of core assets in
a prescribed way [1]. This paper maps Blade to this definition
of software product line and demonstrates some of the concepts
applied in order to limit the initial development cost associated
with software product lines [2]. It also highlights our successes
and failures in taking this approach, in particular with respect
to realizing the proposed benefits of software product line
development.

The culture that led to the development of Blade as a
software product line grew within the company without

reference to academic literature. This mirrors the first SPLs
identified by Clements [1], which grew out of industrial need
rather than academic endeavor. We discuss the benefits of
SPLs and illustrate that those benefits are achievable for a
small development team. Development time data and bug
maintenance data gleaned from the lifetime of Blade are used
to investigate this.

In order to confirm or deny the benefits of SPL concepts in
Blade development a comparison was carried out. As Blade is
a mature product it has had sections of its code rewritten over
time. Originally it was developed in an ad-hoc fashion with the
customer being the key driving force. In this paper such an
approach is described as a customization approach. One of the
key identifiers of such an approach is that customer changes
require of custom code written to be for them, and that
variation is dealt with by selection statements checking which
customer is currently using the system. Gradually the focus of
development changed to a more configurable framework that is
comparable to SPL development. This is where configurable
core assets are developed that have the potential to deal with
various customer requirements so that change requests can be
dealt with by configuring the related core asset instead of
rewriting it. In this paper we compare the customization
approach and the configurable approach for one section of the
Blade product that has been subjected to both approaches. This
section, risk and control scoring, has experienced considerable
variation between customers, due to the dynamic nature of risk
management.

This paper is structured as follows. Section II describes the
terminology involved in operational risk management, and
provides an overview of the software product, Blade. Section
III describes the processes and policies that have been adopted
to manage core asset development and eliminate some of the
recognized problems associated with SPLs. Section IV presents
a detailed comparison of the two different approaches to
developing code. Both these approaches are compared in terms
of initial development cost, maintenance cost and other noticed
effects of the changes. Finally, in section V, we present our
conclusions and discuss possible further research and
opportunities to improve efficiency by reference to the SPL
literature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Limerick Institutional Repository

https://core.ac.uk/display/59346694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.manaraa.com

II. BACKGROUND
In this section we provide background information related

to operational risk management and to the product that is the
subject of this paper. Section II.A introduces risk management
concepts and definitions. It also covers what is involved in
managing risk in financial companies. Section II.B deals with
how the product helps risk managers manage their risk as well
as background on the forces that caused it to evolve to a
Software Product Line.

A. Operation Risk Management
Operational risk is the risk of loss resulting from

inadequate or unsuccessful internal processes, people or
systems or from external events [3]. For example, an
earthquake is a risk for offices in certain countries. A risk
control is a protective measure for reducing risks to, or
maintaining risks within, specified levels. Earthquake
insurance is a control on a risk that mitigates the impact of an
earthquake if one occurs. An occurrence of an earthquake is
called a risk event. In a risk event, a risk is transformed into
consequences that may relate to internal or external sources.

All companies are susceptible to operational risk events and
failed processes. For example, Toyota, one of the world�’s
largest car manufacturers, was obliged to recall over 2.3
million US cars due to a failed internal quality process. Toyota
lost 21% of its share price and suffered immense damage to its
reputation from this event. It could have been avoided if the
risk had been identified and proper controls put in place to
prevent it [3].

Financial institutions have a regulatory requirement to
manage risk within their organization. This requirement covers
both internal and external risk. Banking institutions are
governed by the Basel II accords [4], while insurers are
governed by Solvency II [5]. The Advanced Measurement
Approach or AMA is the highest level of operational risk
management according to Basel II. It states that the institution
has to convince its supervisor or regulator that it is aware of
and is managing its risks. To comply with AMA, the company
must at a minimum have the board of directors and senior
management involved in the process. An operation risk system
that is conceptually sound and that is implemented with
integrity is required, and the company�’s risk team must have
sufficient resources and training [4].

Early identification of risks and the implementation of
controls that lessen the effects of those risks are vital in
preventing damaging risk events. Identifying risks is a
complicated activity for businesses. It requires a large amount
of information from different sources, both internal and
external to the company. External events are analyzed to
determine if the underlying risks that caused the event could
exist within the company, and if such an event is likely to occur
for that company. Companies also record and maintain other
information such as indicators and scenarios that help them to
identify risk and controls and quantify the impact and
likelihood of risk events

An indicator is a measure of certain activity within or
outside of a company over time. It is used to evaluate how
likely a risk is to occur. For example, if an indicator based on

unemployment figures goes up it is more likely people will not
be able to repay mortgages. The probability of risks related to
unpaid mortgages therefore goes up.

A scenario is a collection of related risks that have a very
low possibility of occurring together but can have a devastating
knock-on effect when they do. Such unpredictable events are
sometimes referred to as black swans as they can occur because
institutions make assumptions about their environments (all
swans are white) that turn out to be incorrect [6].

Companies will usually maintain a master register of all
risks that they are aware of. These register risks would be
related to their business area and the wider industry in which
they operate. Libraries of controls and tests for those controls
are also managed. Local risk managers select from these
libraries of companywide risks to create local risk maps for
individual departments.

To reassure regulators and supervisors that they are
managing risk appropriately, companies perform risk
assessments periodically. A risk assessment can be control-
centric or risk-centric depending on the relative importance
given to the controls and risks within a company. In a risk
assessment controls and risks are scored using what can be a
very complex scoring model. These complex scoring models
serve a dual mandate. Firstly they are an attempt to quantify
what can be a quite complex problem, such as the probability
of an earthquake occurring. They are also designed to convince
regulators that the organization knows what its risks are and
has adequate controls in place to deal with them.

 Risk Management is not about avoiding all risk events as
such a task would be impossible. It is about setting a threshold
of acceptable risk and limiting the impact of risk events when
they do occur. A risk manager, after completing their risk
assessments and having signed off on the level of risk will
report that level of risk up to senior management. Often the risk
assessments are rolled together to give a broader sense of the
risk level in the company. This conforms to the first
requirement of AMA to ensure that senior managers are
informed and aware of the level of risk.

Control-centric assessment deals with users signing off on
controls and confirming that the control has been performed. A
risk with unperformed controls can have a much higher impact
than when the controls are performed. This means that senior
management can be signing off on a lower level of risk within
their company than actually exists. Such action may result in
formal regulatory action and have severe consequences for the
company.

B. Blade
Blade is the risk management software application that is

the subject of this paper. It is a web application that supports
many different customer frontends. Web applications have
previously been built as SPLs, for example the vacation home
rental application, HomeAway [7]. In the case of HomeAway,
the driver for development was the acquisition of different
companies with web sites in the same business context. In our
case, the driver for developing configurable core assets was the
need to support varying customer requirements without an
increase in costs.

www.manaraa.com

Blade is targeted at financial institutions such as banks,
insurers and asset managers. An operational risk management
system needs to conform to the requirements for AMA and
help companies identify, categorize and assess their risks. The
software provides support for all the varied operational risk
management processes. It is a web based application based on
the .NET framework and Microsoft SQL Server. It was first
developed in 2000 using ASP as the base language. Since then
it has been fully redeveloped in .NET with C# being used for
backend auto generated data classes and VB.NET used as the
code behind the web pages. In 2008, the Model View Presenter
(MVP) pattern was implemented as the architectural pattern for
new pages.

Blade is split into four solutions. One contains core
components such as authorization and reporting features that
the other three use. Modules for the different processes in
operational risk management, such as risk assessment, control
signoff and managing risk events, are contained in the main
solutions. The two other solutions are specialized modules for
the recording of indicators and scenarios. These tasks are
outside of the usual remit of an operational risk management
team but can increase the accuracy of risk calculation.

The development of indicators and scenarios led to the
refactoring of many core assets out of the main solution into a
core asset solution. These assets needed to be available to
other solutions. Some core assets were developed specifically
for one of the modules to solve a specific requirement, e.g. a
user-definable list and a lazy loading tree. These core assets
have been introduced back into the main solution. The user
definable list has been so successful that it now has over eighty
implementations and is the default solution for any new lists
that are needed in the system.

In terms of size, the total code base is over two million
lines of code, with one thousand tables and two hundred stored
procedures. This is a large project for a small development
team to maintain and upgrade. As a mature product, modules
and concepts have changed over time. These changes range
from maintenance fixes to complete rewrites to take advantage
of developing technology. This leaves areas that have in the
past needed to be customized to individual customers but now
are configurable instead.

Scoring is one of these areas, and is the focus of the
comparison in this paper. It is an area that experiences a huge
amount of variation between customers. A risk assessment is
where a user will score their risks and controls on a regular
basis. The base unit of a score is a single input called a scoring
measure. This is where the user records a single fact about that
risk or control i.e. how damaging the risk is, or the probability
of the risk occurring. A user-defined calculation uses these
inputs to calculate a score value. This score value is then
compared against a set of thresholds to evaluate a textual
description for that score. These calculations are recursive; one
score value can be an input into a further calculation to create a
new score value.

Inputs to a scoring measure do not necessarily come from
the user entering a value on the front end. They can come from
thresholds set against the organization that the risk is part of,
from external or internal events targeted against that risk, from

indicators that the customer records and from other external
systems. The calculations for a risk score often depends on a
special set of inputs called combined control scores. These are
calculations using the set of all controls acting on that risk.
This makes scoring a complex and challenging problem.

It was initially solved for customers by embedding their
scoring models and their individual calculations into stored
procedures and the code. However, in the first quarter of 2009,
the underlying framework of scoring was changed to be user
configurable. In order to reduce the development risk it was
first changed for risks and then after the concept was validated
it was applied to controls.

Many success stories exist that testify to the benefits of SPL
development and the introduction of SPL methodologies [1],
[7], [8], [11]. These stories highlight the benefits in terms of
costs efficiencies, decreases in development time and quicker
time to market. However they also identify a high initial
development cost for the development of SPLs. Small
companies do not necessarily have the capital for such
development and hence techniques or processes that avoid the
initial high cost are required in order for small companies to
move in a SPL direction and realize these benefits.

The refactoring of customizable sections such as scoring
into configurable frameworks have helped us realize the
benefits of SPLs. Different sections were refactored slowly
over time in order to spread out the initial development cost.
This also lead to a spreading out of the benefits, however it was
unavoidable as the initial investment required to implement
SPLs fully in a short space of time could not be supported by
revenue streams.

III. APPLYING SOFTWARE PRODUCT LINE DEVELOPMENT
TO BLADE

The original Blade system was as a standalone project for a
single customer. Three years after its initial development it was
adapted for release as a software product. The match between
Blade and what the market required was not perfect. It shared
many of the core concepts of operational risk management but
each customer had a different understanding of the details.
Within the company Blade is still thought of as a single
product instead of as a product line, despite the fact that
allegories of the organization and processes used can be found
throughout the SPL literature and are highlighted in the
following subsections.

Blade can be considered as an SPL due to the amount of
variation between customers and the implementation process
applied for each new customer. Every new implementation
requires matching the capabilities of the system to the needs of
the customer. Those needs are so varied that each new
customer is viewed as a new product in the greater product line
of existing customers. An implementation requires picking and
mixing the existing capabilities into a new configuration for the
new customer. Doing this well requires significant effort. In
order to limit the cost of new implementations ORisk
Consulting has geared itself towards utilizing the benefits of
SPL development.

This section covers the details of the organizational
approach applied and the processes that it covers. It focuses on

www.manaraa.com

the specification and development of core assets and how the
focus of development is kept on core asset development instead
of on customization of code for individual customers.

The remainder of this section is organized as follows. In
section A the development organization is discussed, while in
section B other processes from the broader company
perspective are described. The broader methodology has grown
out of the success the development team have had with core
assets.

A. Core Asset Development and Processes
Creating the core assets is a key activity of SPL

development. It is from these core assets that new products are
developed. The development team is small and does not
include a dedicated core assets team. Responsibilities for core
asset development must be shared amongst the team members
on the basis of who is available to work on them.

Kruger classified three models for developing core assets,
proactive, reactive and extractive [12]. In a proactive model,
core assets are mapped out exactly before commencing their
development. It is reminiscent of the waterfall life cycle and is
geared towards having a dedicated core development team and
hence ill-suited to small teams. In a reactive approach the core
assets are built when there is a need for them, hence reflecting
agile methodologies. The extractive process takes an existing
product as the base for reuse. Parts of the product are extracted
as core assets and then reused within that product or in new
products.

Blade development uses a primarily a reactive strategy
combined with some extractive processes. A reusable asset is
identified by finding a capability that is required in two or more
places. It is often found by developers recognizing that a
required piece of functionality already exists, and deciding to
combine both implementations into one. This involves reacting
to the new requirement and extracting existing attempts at that
requirement into a new core asset. Such a combination of
reactive and extractive is preferable to proactive strategies for
small development businesses as it limits risk and initial
investment [11].

Staples and Hill report similar experiences with SPL
development in a small company that does not have a defined
SPL architecture [8]. In Blade also, the architecture has
evolved based on the needs of the customers. This customer-
focused method of dealing with variation has much in common
with customer-centric, one-of-a-kind development in
manufacturing [9], [10]. In one-of-a-kind manufacturing
customers order a product made up of available parts. This
matches how implementations of Blade are done, as modules
are selected by customers and configured to match their needs.

Having just a single development team acts as a business
unit as described by Bosch [13]. Such a setup has drawbacks as
it does not focus on shared assets and the cost around making
decisions involving shared assets is high [14]. Approaches to
counter these drawbacks have previously been proposed for
example using a �“champion team�” in place of a core team [15].
However we have not encountered these drawbacks. Over time
three main tenets have been developed to guide our attempts at
core asset development and to ensure that the benefits of core

asset development are known and utilized throughout the
company. It is possible that the tenets guard against these
disadvantages. These tenets are:

• Avoid development risk, i.e. ensure that the
development of the core asset does not impinge on our
ability to deliver agreed changes.

• Create core assets that fulfill a need within the system
and are useful to the development team.

• Communicate changes and new core assets across all
teams and rotate the implementations of new instances
of the core assets between developers

For the first tenet new core assets must be prototyped in a
limited area first and then validated by the quality assurance
department before being propagated to other parts of the
system. An example of this tenet is how we created the Generic
List. It was one of the first core assets developed and is a user
configurable list control where a user can set what columns are
displayed, how the list sorts and what search criteria are
applied to it. The core asset makes it easier and quicker to
implement a rich list user interface. It was first implemented
during the development of the Indicators module.

The Indicators module allows users to define and record
different risk indicators to try to gain better insight into the
probability and impact of risks. It was developed as a green-
field solution and as such allowed for the growth of new
development concepts such as the Generic List core asset.
After Indicators was released and the basic concepts of the
Generic List were validated it was added to the main Blade
modules. This recursive rollout allowed the Generic List core
asset to be refined and to ensure that at each step there was the
least amount of impact on the rest of the code base. Other
companies have also taken a phased approach to the extraction
of core assets for SPL engineering in other to limit risk and
initial development cost [16], [17].

Limiting the development risk also limits both the cost to
make decisions and the cost to implement those decisions. If
the rule of thumb is to always make the decision with the least
amount of impact on the system, then making that decision
becomes easier. In some cases a decision will be taken that is
not the one with the least associated risk. In this case it will
lead to greater rewards with an acceptable level of risk.

The second tenet means that core asset must make a
developer�’s job easier by removing some time-consuming
repetitive development task. For example, a standard .NET grid
requires the setting up of template columns, bound columns,
look and feel standards, sorting and a multitude of other minor
tweaks. With the Generic List core asset, a developer
essentially obtains all these tweaks for free. When the Generic
List was applied to the Blade solution it removed over four
hundred lines of code per page and replaced it with five lines of
code and around twenty lines of metadata. This makes creating
list pages much easier and quicker when using the core asset.

Developer-friendly core assets hugely improves developer
uptake of those core assets. It also removes the barrier to
acceptance for new core assets among developers. There can be
a tendency to resist change and new ways of writing code;

www.manaraa.com

however ensuring ease of use of core assets provides an
incentive to developers to use the core asset and to identify
potential new core assets within the system. This keeps the
focus on core asset development within the team.

Without knowledge of a core asset, it cannot be used and
the benefits of developing it are lost. This makes the third tenet
the most important and, as such, we have processes in place to
ensure its survival. After completion of the initial prototype
which is usually the responsibility of one developer, that
developer must inform the rest of the development team about
that asset. This is done at the weekly developer update meeting.
The communication also goes from the development team out
to the business analysts and to the quality assurance team. The
outwards communication means that the core asset can be used
as part of the language between the different teams. As the core
asset is part of the language set, business analysts will tell
developers to implement an instance of a core asset or to add a
new capability to an existing one. This knowledge sharing is
how we ensure that the most reuse benefit is gained from each
core asset.

Krueger stated that a key to combating entropy and
developing core assets is to give someone the responsibility to
identify core asset opportunities within the development team
[18]. Developing successful core assets such as the Generic
List that benefit development as well as the product, changes
the company culture to be more focused on core asset
development, as well as delivering on Krueger�’s point. As we
limit development risk with each step that we make to create a
core asset, the core assets that are developed tend to be very
successful and deliver real efficiency gains. However this
approach does lead to a longer development time and cost for
the final core asset.

Handling variation is another key aspect of core asset
development. Anastasopoulos defined four different binding
times for variability in SPLs [27]. Compile-time binding is
where the variability is defined before or during the
compilation of the code. Link-time binding is where different
libraries are used and linked into the code. Runtime binding is
where the variability is resolved during the execution of the
program. Update-time binding is where variable functionality
is added when the software is updated.

Blade provides variation at runtime as well as using a
variant of compile-time binding that we call design-time
binding. Design-time binding is when the variation between
different instances of a core asset is designed into the system.
This design variation involved is usually a fundamental
variation such as the difference between scoring a risk and
scoring a control. A particular instance of a scoring asset needs
to know what type of scoring asset it is. Design-time binding is
different to the original definition of compile-time binding as it
does not allow for the addition or removal of code from the
system, but involves the hardcoding of the fundamental
features of a core asset.

As a company we do not believe in limiting the capabilities
of the product in such a way to make it hard for customers to
change their minds about the capabilities that they wish to
have. For this reason, all changes within a core asset, other than
those described as fundamental to that instance of the core

asset, are configurable at runtime. This means that we do not
use link-time variability or compile-time variability based on
preprocessor directives, as using those mechanisms would
require us to release a new version of the product to the
customer with the relevant Dynamic Link Libraries or
preprocessor arguments.

Anastasopoulos also described a set of mechanisms for
code level variation [27]. Blade uses Parameterization -- core
assets are parameterized and different capabilities are made
available depending on the values passed. Such a method
allows for easy metadata configuration as the database can
contain the necessary parameters to create an instance of a core
asset, and all that is required at design-time is a reference to the
particular set of parameters for a given core asset.

More complex core assets, like the scoring model, require
inheritance and interfaces to implement variation. Risk scoring
and control scoring are saved to different tables within the
system. Therefore they are passed an instance of an object that
implements a common interface and that point to their
respective database tables. This object is used by the core asset
to populate its base state as well as to save any changes to the
scoring. Such a variation mechanism also uses design time
variability as it requires an instance of the core asset to be
passed a particular object based on what that instance is
intended to be do.

B. Other Processes influenced by Software Product Lines
As part of the process, business analysts are kept informed

of developed core assets. While the development and
identification of core assets is a development task, once they
are created the business analysts can make use of them. A
hybrid agile/waterfall approach is used for historic and
commercial reasons. Much of a quarter�’s work comes from
customers. These changes need to be signed off by the
customer before development starts. This requires a
specification to be written for that change. Once the
specification is signed off it goes to the development team.
This is where the process becomes more agile.

In order to keep the development focus on core-asset
development instead of single customer development the
specifications are written in such a way as to provide the most
benefit to the most customers. Customers face similar problems
and hence requirements are often shared. It is the task of the
business analyst to take a single customer�’s requirement and
translate it into both the system vocabulary and the vocabulary
of other customers. If the business analyst cannot determine if a
change is right for different customers then a working group of
customers is brought in and asked if their companies share the
requirement and how they would like to see the change
implemented. Where a change request is specific to only one
customer and no other customer would ever what to do it then
we will usually refuse to do the change. This is because over
the lifetime of Blade we have learned that the development fee
that can be charged does not cover the cost and effort involved
in maintaining code for a single customer.

Writing specifications is a time-consuming task, and, in the
past, there bottleneck problems have occurred. Developers can
be left idle waiting on complex specifications to be finalized

www.manaraa.com

Figure 1. Initial development time (in hours) for the configurable
framework, the custom implementations, and migration between the two.

and signed off. Core asset development helped us overcome
this bottleneck by speeding up the specification writing
process. For example, if a change requires a new list then a
business analyst can simply use a Generic List in the
specification and then the developer or quality assurance expert
reading the specification knows that this is a list that requires
user selectable fields, sorting and filtering functionality.

Like design patterns [19], using core assets has provided a
common lexicon to describe complex pieces of code easily and
efficiently [19], [20]. Unlike design patterns this lexicon is
common across development, business analysts, quality
assurance and even customers, thereby easing communication
on all fronts. This does provide a barrier to new employees as
they must understand the same concepts that the rest of the
team works in. Documentation helps with this. An internal
Wiki of all core assets within Blade is maintained and updated.
It includes implementation and user guides, feature
explanations as well as lists of all implemented instances of the
core asset and the features enabled for each one.

Having customers and business analysts involved with core
assets has led to a lot of focus on improving those core assets.
For example, the Generic List has had numerous feature
upgrades like the adding of saved personal filters, quick search
and export options. All of these features are made optional if
possible. If a feature should not be available for a particular
instance of a core asset due to a logical rule then that feature is
turned off in the metadata. For example a quick search should
not be available for lists that are themselves the result of a
different search. Keeping track of logical rules like this enables
us to quickly determine what features a new instance of a core
asset should have. This in turns limits the cost of implementing
new core assets and of making decisions about those assets.

Making the features of core assets switchable and
configurable by customers removes much of the burden of
variability management [21], [22]. Blade is a web application
and does not have limitations on the size of its installation
footprint. This means that all customer variations can be
shipped to all customers without the need to exclude branches
of execution using techniques such as conditional compilation
[23]. This allows customers to take advantage of not only their
own knowledge base of best operational risk management
techniques, but also the knowledge base of other Blade
customers.

Unfortunately the negative side of making all the code
available is the impact on the quality assurance team. This team
requires a lot of time to test any change to a widespread core-
asset. This is because any change to a core asset needs to be
checked in all instances of that core asset against all known
customer configured variations of that core asset. However,
since the system is configurable at runtime, a customer might
have changed a setting and this setting change may not be
captured and tested by the quality assurance department. There
is a risk, due to the complexity of this approach, that serious
bugs will pass unnoticed through testing and have a negative
reputational impact on the company. While this has proved not
to be a problem in practice, it remains an area of testing where
we still are seeking a good solution.

IV. COMPARISON OF DEVELOPMENT AND MAINTAINENCE
EFFORT BETWEEN CONFIGURABLE AND CUSTOMISABLE

APPROACHES
In the first quarter of 2009 the risk assessment module of

Blade was rewritten. A key part of this rewrite was to develop a
new configurable scoring framework that could deal with all of
the complexities of existing customer scoring as well as future
customers�’ scoring requirements. This new configurable
framework replaced the original scoring models in Blade. Eight
different scoring models were developed for customers
between the first version of Blade in 2000 and when it was
replaced in 2009. These scoring models were migrated to the
new framework.

The comparison presented here covers a time period of ten
years from September 2000 to September 2010. The analyzed
data covers over 21,000 bugs and 1,000 change requests. All
bugs relevant to either version of scoring were extracted from
this data. 1,009 relevant bugs were identified.

This section compares the two methods of dealing with
customer variation, customization and configuration. It is
performed across three levels. The remainder of this section is
as follows. First, in section A the initial time to develop is
examined. Next, in section B the bug maintenance effort for
each version is calculated. The third section C deals with the
other effects of moving from a customizable scoring approach
to a configurable scoring approach.

A. Initial Development Time
The definition of initial development time used here for

comparison is the time recorded against a change request from
the start of implementing that change to the time it is first
delivered to the customer as completed. It does not include the
time taken to specify or negotiate the change request. The
initial development for the customizable scoring models covers
the development time for implementing eight different scoring
models. The initial development time for the configurable
approach covers development of the framework as well as the
implementation of six new scoring models in that framework.
There is also a significant development cost to migrate the
eight original scoring models and existing customers onto the
new configurable framework.

www.manaraa.com

Figure 3. Breakdown of bug counts across bug priority.

Figure 2. Comparison of maintenance effort required by configurable and
customizable approaches.

Replacing the existing customization approach with a
configurable approach required a considerable upfront
investment as seen in Figure 1. This investment represents the
combination of the migration and configuration columns and is
greater than the cost of developing the original scoring models.
The average time to create a new scoring model for the
customization approach is 24 hours. For the configurable
section it is 23 hours (including migration time). This increase
in efficiency is too small to justify the amount of investment
required.

Developing the configurable framework was a one-off cost
of around 115 hours. This cost does not need to be reapplied
for each new configurable scoring methodology. The average
time to implement a new scoring methodology using the
configurable framework when the development of the
framework is excluded is around four hours. This is a six times
increase in efficiency. Adding new scoring models is an
increasingly common task. In the two year period since the
creation of the configuration framework, six new scoring
methodologies have been created. This compares to the eight
that were built during the nine years before that. Thus the effort
involved in developing a configurable approach has already
paid off.

B. Maintenance Time
The level of maintenance required by a change to a product

is sometimes overlooked. Part of the development process
requires developers and quality assurance personnel to record
time directly against the defects or change requests that they
are working on. By recording time in this way we are better
able to estimate workloads and plan quarters.

This data can be used to analyze the maintenance record of
any module or component of Blade. The overall count of bugs
related to an area and the time recorded against them provides a
clear image of the maintenance cost of a section of code as well
as any problem areas.

Figure 2 highlights the comparable bug counts between
custom scoring and configurable scoring. The configurable
scoring count includes bugs raised during the migration of the
old scores to the new framework for existing customers. The
overall bug count for configurable scoring is significantly
smaller than the bug count for the customized code. We can
suggest two main reasons for this.

Firstly the custom implementation has a larger code
footprint than the configurable implementation. The
customizable approach deals with variation by using selection
statements. Eight different scoring methodologies require eight
different conditions. The result of which was a lot of confusion
and a lack of readability in the code. Part of the development
goals for configurable scoring was to eliminate this confusion
by centralizing the code and removing some of the recurring
bugs that continually customizing the code was throwing up.

The difference in the relative bug counts per priority in
Figure 3 highlights this difference in code footprints.
Considerably more trivial and critical bugs were found during
the lifetime of the custom code than in the configurable code.
These bugs were grouped around several problems areas. The
trivial bugs primarily occurred as look and feel bugs. The select
scoring measure values page. For one scoring methodology the
page got duplicated requiring the same bug fixes to be done
across two different pages. Each time a new set of scoring
measures were added to the page it would break the look and
feel for the other scoring methodologies.

The majority of critical bugs raised against the custom
implementation were grouped around problems in the different
calculations. Primarily those calculations were not returning
the expected value. The root cause often came down to the
function doing the calculation getting incorrect values for the
measures passed to it, or getting the values in the wrong order.

These problems are avoided in configurable scoring as the
user interface is dynamically built based on configured
metadata. The metadata tells the software what measures to
display, the valid values for those measures and in what order
to display them. How the controls are added to the page is
constant so look and feel cannot be broken for old scoring
measures when a new scoring methodology is added. It also
ensures that the correct measures are shown for the correct
methodologies. The calculation itself is also configured in
metadata. This limits the impact of defects in the calculation as
it can be changed without having to change code. This dynamic
adding of controls forms the basis of the configurable approach
taken with scoring.

The configuration of the metadata that the scoring uses is
an area unique to the configurable approach. It is here that most
of the bugs with configurable scoring occur. Metadata bugs
tend to be raised as serious and this is why the number of
serious bugs is so high compared to the critical and trivial bugs.

www.manaraa.com

Figure 4. Hours spent on scoring-related bug fixing by year.

All the scoring measures and calculations are built up using
metadata that is entered by a business analyst or support
engineer. It is a complex task that is prone to error. It is hoped
that tool support will decrease the number of bugs raised due to
metadata issues and improve the current average time to set up
a new scoring methodology as well as decrease the
maintenance cost.

Another possible reason for the large disparity in bug
numbers is due to the fact that the custom implementation has
had more time to mature than the configurable scoring
implementation. Figure 4 highlights the difference in ages. It
shows the estimated hours for both configurable and
customizable scoring across the years. The hours were
calculated by applying the average time recorded against bugs
by the development team for each bug priority to the total
number of bugs for that priority relevant to scoring.

Figure 4 also highlights the nature of the maintenance effort
over time. The number of hours per year for the customizable
approach can be seen growing at an increasing rate up until
2006 and then begins to taper off. The shape of the curve for
the customized effort can be explained with reference to the
number of different scoring implementation done in each year.

2005 saw the introduction of two new scoring models. This
is reflected in the tripling of the required maintenance for that
year. 2006 had four new scoring models and two and a half
times as much maintenance effort required as the previous
year. The next two years saw a drop off in maintenance effort.
Only one new scoring methodology was implemented during
this time.

The curve for configurable scoring is different. It starts with
a huge amount of effort in the first year and then dramatically
decreases. The first year maintenance for configurable scoring
far exceeded the peak maintenance effort for customizable
scoring. As configurable scoring was developed in the first
quarter of the year, the next three quarters were spent migrating
customers using the old scoring setup. This is where a lot of the
maintenance overhead for that year came from. In part it is
counted in the initial development cost in Figure 1. Customers
also took the opportunity to revise their scoring methodology
during the migration and this led to an inflation of the
maintenance cost for that year.

2010 saw the implementation of six new scoring
methodologies however it did not see a corresponding increase
in the number of maintenance hours as would be expected from
the curve for customizable scoring in Figure 4. The amount of
effort required for the maintenance of fourteen different
scoring models is below the 2005 levels of maintenance for
only three scoring models. While the figures for the last three
months of 2010 are not included in this paper there was no
significant change in development effort for that time period.

Overall the required maintenance in 2010 was eight times
less than the previous year. This is a remarkable decrease in
maintenance effort, even when the inflated nature of the 2009
bug count is considered. The decrease in maintenance hours is
also in line with the decrease in implementation time for a new
scoring methodology shown in Figure 1. This represents a
significant year-on-year reduction in development effort.

C. Other Effects
The configurable scoring model was built upon the tribal

knowledge developed over the lifetime of Blade. This
experience came from implementing scoring models and from
talking to prospective customers. It was the bringing together
of the different strands embedded in the different customer
implementations that allowed the rich tapestry of configurable
scoring to exist. The team that designed configurable scoring
backs up this point of view in informal discussions. They
believe that they could not have designed it without six years of
listening to customers and the associated customization of the
code to those customers' needs.

 Existing customer response to the changes has been
positive. They have taken the opportunity to make changes to
their risk models when migrating from their existing custom
coded implementation to an implementation configured to their
needs. Apart from minor look and feel changes, the scoring
front end appears to operate the same to end users as it did
before. Some customers who use Blade only for the recording
of risk events are also considering using risk assessment now
that it has the flexibility to match their needs without a large
cost attached for customizing the code.

Market response has also been good. Since 2009 the
number of customers using Blade has doubled. This increase is
not directly contributable to the changes to the scoring model
however the ability to configure Blade instead of customize it
has helped the company keep up with the pace of sales. During
2010, nine implementations took place concurrently, which is a
record for the company. This increase in implementations was
not met with a corresponding increase in staffing number or
workload due at least in part to the change from a
customization approach to a configurable one. Six of these
implementations required a new scoring model. One of the new
scoring models was very complex and required more than
twelve scoring measures. Such a scoring model could not have
been implemented without considerable investment if a
customization approach had been taken.

V. CONCLUSIONS
ORisk Consulting has made considerable progress in

improving the quality of the code in Blade, and in reducing the
time it takes to create that code, by adopting core asset

www.manaraa.com

development. The increased quality is confirmed by the
reductions in bug numbers across the implementation relating
to risk and control scoring. The increase in efficiency is shown
by the comparison of initial development times between a
customizable approach and a configurable approach that uses
core assets. New scoring methodologies are shown to be
considerably faster to implement using a configurable approach
than customizing the existing code for that methodology. The
breakeven point, when the initial cost of building the
configurable core asset is taken into account, was achieved in
the second year of the evolution after only six implementations.

Using the three tenets described in Section III.A enabled
Blade to avoid some of the pitfalls related to SPL development
in small development organizations. These tenets -- avoid risk,
create developer friendly assets and communicate changes
clearly -- encouraged developers to focus on core assets and
increase communicate between the different layers of the
organization.

Making customers responsible for change within their own
implementation lies at the heart of much of the user interface
and core asset work that has been done. By giving the customer
the power to configure the system to their needs at runtime we
remove much of the burden of variability management from
development, while delivering added value to the customer.
Allowing users within a company to customize their own
experience has also had unforeseen benefits. It aids
collaboration between users [24], and enables them to use the
product as they wish, which is a key advantage in the market.

It is our recommendation that similar sized companies with
large variations between customers should develop
configurable core assets that can handle existing customer
requirements, as well as future requirements. A mature base
product can aid the development of core assets as a certain
amount of software entropy is required in order to make robust
core assets. Mistakes in any industry or practice need to be
made before they can be corrected and a better product
developed. A good bug recording system is beneficial to all
companies in order to identify bug black spots, however with a
mature product the trouble areas can be identified by tribal
knowledge and the identification of areas of code in which
developers dislike to work.

How the approach described in this paper would scale to a
larger development organization is unknown. It is unsure how
the three tenets that we follow would scale to benefit
companies with multiple development teams and projects.
There are benefits to companies of any size in avoiding initial
risk and encouraging development to build core assets by
making development less onerous, however communication
between teams and departments becomes more complicated in
larger organizations.

One area not handled within this paper is validation of core
assets. We have not yet developed a method to reduce the
amount of time required for core asset testing. In fact, changes
to core assets can lead to the retesting of all implementations of
that asset which can be a drain on the resources of the quality
assurance team. This appears to be an unsolved problem in the
SPL community [26]. Applying the concepts of SPL
development to the testing process as we have already applied

it to the specification process may result in improvements in
this area.

Overall Blade�’s transition to an SPL has been very
beneficial. The increases in productivity and implementation
time have been key factors in increasing market share. This
confirms that, for Blade, the benefits of SPLs are real. It is
hoped that even greater benefits can be gained by continuing
the focus on developing core assets and applying our
experience of developing an SPL to other areas of our software
development cycle.

ACKNOWLEDGMENT
The authors would like to thank Dr. Myra Cohen of the

University of Nebraska-Lincoln for reviewing an earlier draft
of this paper. Her valuable feedback enabled us to improve it
considerably.

This work was partly supported by Science Foundation
Ireland grant number 03/CE2/I303_1 to Lero -- the Irish
Software Engineering Research Centre.

REFERENCES
[1] Clements, P. and Northrop, L., Software Product Lines: Practices and

Patterns, Addison Wesley, 2001.
[2] Chu-Caroll, M. Separation of Concerns in Software Configuration

Management, In Proceedings of the ICSE 2000 Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering, 2000.

[3] R.S. Kenett and Y. Raanan, Operational Risk Management: A Practical
Approach to Intelligent Data Analysis. John Wiley & Sons Ltd. 2011.

[4] Basel Committee on Banking Supervision, Consultative Document on
Operational Risk, Basel Committee, January 2001.

[5] European Parliament Directive number 2009/138/EC, On the taking-up
and pursuit of the business of Insurance and Reinsurance (Solvency II),
Official Journal of the European Union, 25 November 2009.

[6] N.N. Taleb, The Black Swan: The impact of the highly improbable,
Random House, New York. 2007

[7] Krueger, C. Churchett, D. Buhrdorf, R. HomeAway�’s Transition to
Software Product Line Practise: Engineering and Business Results in 60
Days. In Proceedings of the 12th International Product Line Conference,
pp297-206, 2008.

[8] Staples, M. Hill, D. Experiences Adopting Software Product Line
Development without a Product Line Architecture. In Proceedings of the
11th Asia-Pacific Software Engineering Conference, 2004.

[9] Tseng, M.M. and Piller, F.T., The Customer Centric Enterprise:
Advances in Mass Customization and Personalization. Springer, New
York, 2003.

[10] Gang Hong, Deyi Xue, Yiliu Tu Rapid Indentification of the optimal
product configuration and its parameters based on customer-centric
product modelling for one-of-a-kind production, Computers in Industry,
Volume 61 Issue 3, April, 2010 pp. 270-279.

[11] Alves, V. Camara, T. and Alves, C., Experiences with Mobile Games
Product Line Development at Meantime, In Proceedings of the 12th
International Software Product Line Conference, 2008. SPLC '08, vol.,
no., pp.287-296, 8-12 Sept. 2008.

[12] Clements, P. and Krueger, C. W. Being Proactive Pays Off/ Eliminating
the Adoption Barrier. Point-Counterpoint article in IEEE Software,
July/August 2002.

[13] Bosch, J., Software product lines: organizational alternatives,
Proceedings of the 23rd International Conference on Software
Engineering, vol., no., pp. 91- 100, 12-19 May 2001.

[14] Pohl, K. Böckle G, and van der Linden F.J.. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

www.manaraa.com

[15] Takebe, Y. Fukaya, N. Chikahisa, M. Hanawa, T. and Shirai, O. 2009.
Experiences with software product line engineering in product
development oriented organization. In Proceedings of the 13th
International Software Product Line Conference (SPLC '09). Carnegie
Mellon University, Pittsburgh, PA, USA, pp. 275-283.

[16] Tekinerdogan, B. Tüzün, E., Saykol, E. Havelsan A., Exploring the
Business Case for Transitioning from a Framework-based approach to a
software Product Line Engineering approach. In Proceedings of the 14th
International Software Product Line Conference (SPLC �’10). pp. 251-
254, 2010.

[17] Iwasaki, T. Uchiba, M. Ohtsuka, J. Hachiya, K. Nakanishiy, T.
Hisazumiy, K. and Fukuda A., An Experience Report of Introducting
Product Line Engineering across the board. In Proceedings of the 14th
International Software Product Line Conference (SPLC �’10). pp. 255-
258, 2010.

[18] Kruegar, C. Churchett, D., Eliciting Abstractions from a Software
Product Line. In Proceedings of the PLEES International Workshop on
Product Line Engineering, OOPSLA 2002.

[19] Gamma, E. Helm, R. Johnson, R. Vlissides, J., Design patterns:
elements of reusable object-oriented software, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, 1995.

[20] Beck, K. Crocker, R. Meszaros, G. Vlissides, J. Coplien, J. O.
Dominick, T. and Paulisch, F. 1996. Industrial experience with design
patterns. In Proceedings of the 18th international conference on
Software engineering (ICSE '96). IEEE Computer Society, Washington,
DC, USA, pp. 103-114.

[21] O'Leary, P. Rabiser, R. Richardson, I. and Thiel, S. 2009. Important
issues and key activities in product derivation: experiences from two

independent research projects. In Proceedings of the 13th International
Software Product Line Conference (SPLC '09). Carnegie Mellon
University, Pittsburgh, PA, USA, pp. 121-130.

[22] Krueger, C. W. Variation Management for Software Product Lines. In
Proceedings of the Second International Software Product Line
Conference (San Diego, CA, U.S.A., August 19-22 2002). Springer
LNCS Vol. 2379, 2002, pp. 37-48.

[23] Pech, D. Knodel, J. Carbon, R. Schitter, C. and Hein, D. 2009.
Variability management in small development organizations:
experiences and lessons learned from a case study. In Proceedings of the
13th International Software Product Line Conference (SPLC '09).
Carnegie Mellon University, Pittsburgh, PA, USA, pp. 285-294.

[24] Bentley, R. and Dourish, P., Medium versus mechanism: supporting
collaboration through customisation. In Proceedings of the fourth
conference on European Conference on Computer-Supported
Cooperative Work (ECSCW'95), Hans Marmolin, Yngve Sundblad, and
Kjeld Schmidt (Eds.). Kluwer Academic Publishers, Norwell, MA,
USA, pp. 133-148, 1995.

[25] Pohl, K. and Metzger, A.. 2006. Software product line testing.
Communications of the ACM 49, 12 (December 2006), pp. 78-81.

[26] Denger, C. and Kolb, R. Testing and inspecting reusable product line
components: First empirical results. In Proceedings of the Intl.
Symposium on Empirical Software Engineering, pp. 184--193, 2006.

[27] Anastasopoulos, M. Gacek, C. Implementing product line variabilities.
In Proceedings of the 2001 Symposium on Software Reusability: putting
software reuse in context. ACM, New York, NY, USA, 109-117.

